
Safety versus Secrecy

�Invited Paper�

Dennis Volpano�

Naval Postgraduate School
Monterey� CA ������ USA
volpano�cs�nps�navy�mil

Abstract� Safety and secrecy are formulated for a deterministic pro�
gramming language� A safety property is de�ned as a set of program
traces and secrecy is de�ned as a binary relation on traces� character�
izing a form of Noninterference� Safety properties may have sound and
complete execution monitors whereas secrecy has no such monitor�

� Introduction

It is often argued that information �ow is not safety� One argument is re�ne�
ment based and originates with Gray and McLean ���� They observed that for
nondeterministic systems	 a class of information �ow properties	 namely the
Possibilistic Noninterference properties	 are not safety properties� The reason is
because they are not preserved under replacement of nondeterminism in a sys�
tem with determinism� An example is an implementation of nondeterministic
scheduling using a round�robin time�sliced scheduler �
�� A possibilistic property
basically asserts that certain system inputs do not interfere with the possibility
of certain events� So nondeterminism is essential to such properties� A safety
property	 on the other hand	 is insensitive to this kind of re�nement� Another
argument commonly heard is that information �ow is a predicate of trace sets
whereas safety is a predicate of individual traces� This argument can be applied
to deterministic systems� We examine it more carefully and present a secrecy
criterion for programs that relates secrecy and safety�

� A characterization of safety properties

Consider a deterministic programming language with variables�

�exp e ��� x j n j e� � e� j e� � e� j e� � e�

�cmd c ��� x �� e j c�� c� j if e then c� else c� j while e do c

� This material is based upon activities supported by the National Science Foundation
under Agreement No� CCR��	
���� sic�� This paper appears in Proceedings of the
	th Int�l Symposium on Static Analysis� Venezia Italy� ����� Sep
����

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 SEP 1999

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Safety versus Secrecy

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School Monterey, CA 93943, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Here x stands for a variable and n for an integer literal� Integers are the only
values� we use � for false and nonzero for true� Note that expressions do not have
side e�ects	 nor do they contain partial operations like division�

A transition semantics is given for the language in Fig� �� We assume that
expressions are evaluated atomically� Thus we simply extend a memory � in the
obvious way to map expressions to integers	 writing ��e to denote the value of
expression e in memory ��

�update� x � dom���

�x �� e� �� �� �x �� ��e��

�sequence� �c�� �� �� ��

�c�� c�� �� �� �c�� �
��

�c�� �� �� �c�

�� �
��

�c�� c�� �� �� �c�

�� c�� �
��

�branch� ��e� �� �

�if e then c� else c�� �� �� �c�� ��

��e� � �

�if e then c� else c�� �� �� �c�� ��

�loop� ��e� � �

�while e do c� �� �� �

��e� �� �

�while e do c� �� �� �c�while e do c� ��

Fig� �� Transition semantics

The rules de�ne a transition relation �� on con�gurations� A con�guration

m is either a pair �c� �	 where c is a command and � is a memory	 or simply
a memory �� We de�ne the re�exive transitive closure ��� in the usual way�
First m ��� m	 for any con�guration m	 and m ��k m��	 for k � �	 if there is
a con�guration m� such that m ��k�� m� and m� �� m��� Then m ��� m� if
m ��k m� for some k � ��

A trace is a �possibly in�nite derivation sequence m� �� m� �� � � � with
�nite pre�xes m� �� m�	 m� �� m� �� m�	 and so on� And if � is a trace
then so is every pre�x of ��

De�nition �� A safety property is a set S of traces such that for all traces ��

� is in S i� every �nite pre�x of � is in S� A program is safe if every trace of it

belongs to S�

The �only�if� direction guarantees S is pre�x closed	 and the �if� direction allows
us to reject an in�nite trace by examining only a �nite amount of it� If there is

�

an in�nite trace that is not in S	 then it must have a �nite pre�x that is also
not in S� Hence safety cannot rule out behaviors that amount to reaching some
execution state in�nitely often�

We also assume that the set of all �nite traces in S is recursive� Although
this need not be true of a safety property	 it seems reasonable given that one
typically identi�es a safety property with the ability to enforce it at runtime by
examining program traces of �nite length�

� A characterization of secrecy

We want to talk about secrecy in programs of our deterministic language so how
should secrets be introduced� Well there is nothing intrinsically secret about any
integer so we should forget about associating secrecy with values� Instead	 we
associate secrecy with the origin of a value which in our case will be the free
variables of a program� So each variable is either high �secret or low �public�
The idea is that any initial value of a high variable is assumed to be secret
merely by virtue of being stored in a high variable� The initial value of a low
variable is not secret�

This origin�view of secrecy di�ers from the view held by others working with
assorted lambda calculi and type systems for secrecy ��	 ��� There	 secrecy is as�
sociated with values like boolean constants� It does not seem sensible to attribute
any level of security to such constants� After all	 what exactly is a �high�security�
boolean� Semantically	 there is nothing that makes it high or low� Basic constants
can be treated as high or low	 and therefore we take the view that they should be
typed polymorphically in any type system where levels of classi�cation become
�partially�ordered types�

We need to talk about secrecy violations� But what constitutes a violation�
Suppose k is a low variable and h is a high variable with initial value ��� Is
the assignment k �� �� in violation of secrecy� Presumably not since it just got
lucky and does not reliably reveal the value of h as h varies� On the other hand	
k �� h would be a violation�

As another example	 consider

k �� h� k �� k � h

Does it exhibit a violation� Despite the �rst assignment	 we might still regard
the composition as secure since h is only temporarily stored in k which always
has �nal value zero� One might wonder though whether even temporary storage
is a violation� It would be if execution could be suspended for some reason	 say
in an interleaved execution environment	 and k�s contents inspected� For now	
we shall stay with deterministic sequential programs and focus on what they are
capable of doing upon normal termination� In this case	 the composition would
be secure� This also allows us to say that

h �� k� k �� h

�

too is secure since there is no way to update h between the assignments�
One can begin to see the subtlety in deciding what constitutes a secrecy vio�

lation� In the end	 it comes down to what is observable by users and programs�
Users can make external observations of running programs and system behav�
ior on chosen inputs in order to learn secrets� Running time	 resource usage	
exceptions and so on are all valuable sources of information	 provided by even
well�designed programs	 that can be observed outside a program and exploited�
Programs	 in contrast	 make internal observations in that they are limited to
whatever observations their semantics prescribe� Controlling these observations
is much more tractable as long as implementations are faithful to the semantics�

and any program translation preserves the secrecy criterion of interest� With
a semantics at least	 we have a means of specifying and reasoning about the
behaviors of programs and the observations they can make� We shall concern
ourselves with internal observations only� This is still useful� For instance	 it
treats a Trojan Horse in mobile code that attempts to leak client secrets�

So now that we have some intuition behind secrecy	 how do we formalize it�
There are a number of di�erent techniques such as process calculi equivalence
���	 a PER model ���	 and operational formulations �
����� In order to contrast
secrecy with safety	 we give a trace�based description� It is useful to �rst de�ne
a notion of con�guration equivalence� Memories � and �� are equivalent	 written
� � ��	 if ��v � ���v for all low variables v� And �c� � � �c�� �� if c and c� are
syntactically equal and � � ���

De�nition �� Secrecy is a binary relation R on traces where R��� �� is true

unless � has the form m� �� m� �� � � � �� �� �� has the form m�

�
��

m�

�
�� � � � �� ��� m� � m�

�
and � �� ��� A program is secret if R relates every

pair of its traces�

Basically	 secrecy is asserting that the �nal value of any low variable does not
depend on the initial values of high variables� This de�nition applies only to
deterministic programs� Notice that a program may be secret even though it has
a �nite trace and an in�nite trace whose starting con�gurations are equivalent�
In other words	 termination of a secret program can be a�ected by di�erences
in the initial values of high variables�

� Contrasting secrecy with safety

Notice that secrecy relates program executions whereas a safety property does
not� This is the essential di�erence between them� There are some interesting
consequences of this di�erence in terms of enforcing secrecy versus safety�

Suppose we take the view that a program may be unsafe but we won�t worry
about its o�ending traces unless one of them tries to emerge during the current
execution� So we don�t try to convince ourselves once and for all that a program
is safe� Instead we accept the fact it may be unsafe and put our trust in an

� Knowing when an implementation is faithful can also be tricky�

�

execution monitor to guard against unsafe behavior� This is an old idea from
operating systems� A monitor works by monitoring the execution of a program
and trapping it before it violates the policy being enforced ���� It relies only on
information available at runtime and does not examine the entire program being
executed� Recovery from such traps may be possible in some applications� It is
in these applications that monitoring is appealing because the complement of
deciding whether a program is safe �call it unsafety may be r�e� when safety is
not� When safety is not r�e�	 we are immediately faced with incompleteness in
any sound and r�e� logic for analyzing it� If the logic were complete then safety
would be r�e� since we would have a way to accept safe programs� simply hand
the given program o� to the machine M accepting programs that have proofs in
the logic� If M accepts then we accept and we know we�re correct because the
logic is sound� And if the program is safe	 then	 by completeness	 it has a proof
and therefore M will accept it� Incompleteness can be an obstacle in practice	
depending on the logic� Execution monitoring avoids it�

Monitoring can also dovetail nicely with a machineM accepting unsafety�M
might cycle through all memories �suitably encoded and run a given program
on each of them for at most some �xed number of steps	 where the memories
and number of steps are governed by pair generation� If the unsafe behavior
reveals itself within the number of steps allowed �guaranteed to be detectable
by M since the �nite traces of a safety property form a recursive set	 then M

accepts� An execution monitor for unsafety is essentially a lazy version of M �
Eventually the monitor might decide that a given program is unsafe but that
does not concern us unless the current run demonstrates it�

We need to be clear on the terms soundness and completeness� The monitor
is a lazy version of M which accepts unsafety� Since M accepts unsafety	 we
have that if a program is unsafe then M will say so �completeness and if M
says a program is unsafe	 it is indeed unsafe �soundness� Therefore	 if M never
says a program is unsafe then the program is safe� This we take as a soundness
criterion for M �and the monitor with respect to the safety property at hand�
Likewise	 if a program is safe	 then M never says otherwise� And this we take as
a completeness criterion for M relative to safety�

A similar technique can be used to prove that the complement of deciding
whether a program is secret is r�e�� One can encode a pair of memories and adopt
some convention for determining values of low variables	 and then run the given
program for at most a �xed number of steps on each memory in a generated pair
when the memories are equivalent� If the runs terminate yielding inequivalent
memories	 then accept� But unlike the complement of safety	 the technique here
does not dovetail with execution monitoring because it requires two memories�
Monitoring involves only one	 that of the current execution� So for this notion
of secrecy	 monitoring cannot be employed as a way to guard against secrecy
violations as it was used to guard against safety violations� In fact	 we can be
more rigorous� As we shall see	 one can prove there is no policy	 implemented by
an execution monitor	 that implies secrecy and is complete� In contrast	 there

�

are many safety properties that have sound and complete execution monitors�
So what alternatives are there for enforcing secrecy�

One approach is to turn to a static analysis whereby we attempt to show
once and for all that a given program is secret� But we will be faced with in�
completeness in any sound and r�e� system for reasoning about secrecy because
determining whether a program is secret is undecidable� Decidable type sys�
tems fall into this category ����� Instead	 one may adopt a very expressive logic
and use veri�cation conditions for establishing secrecy without worrying about
mechanizing proofs� Work along these lines is described in ����

In the next section	 we shall see an example of a program secrecy crite�
rion implied by a policy that is implemented using an execution monitor� It is
called weak secrecy� A disadvantage of weak secrecy is that it ignores indirect
dependencies caused by branching�hence the term �weak�� As a result	 some
programs satisfy weak secrecy but are not secret� But there are also secrect pro�
grams that do not satisfy weak secrecy	 re�ecting a basic requirement of safety�
So neither property implies the other� The monitor is sound but incomplete for
weak secrecy� It may trap a program that satis�es weak secrecy�

� Weak secrecy

Every trace has a corresponding branch�free program formed by sequencing up�
dates from those steps of the trace whose derivations are rooted with updates�
For instance	 if k� h � dom�� and ��h � �	 then corresponding to the trace

�k �� h� if h then k �� � else k �� �� � �m�

�� �if h then k �� � else k �� �� ��k �� ��h� �m�

�� �k �� �� ��k �� ��h� �m�

�� ��k �� ��h��k �� �� �m�

is the branch�free program k �� h� k �� �� Notice that by rules �loop and
�branch	 the corresponding program for a trace may be empty�

Now we say that a program is weakly secret if every trace of it has a secret
branch�free program� For instance	 the program in the preceding example is not
weakly secret� Traces m� �� m� and m� �� m� �� m� do not have secret
branch�free programs	 but m� �� m� �� m� �� m� does� It may seem that
we still have not de�ned a criterion for program secrecy that follows from some
policy implemented by execution monitoring since we still cast our de�nition in
terms of secrecy which relates program executions� But there is a policy that
implies weak secrecy and it can be implemented by an execution monitor�

��� A policy for weak secrecy and its monitor

An execution monitor is given in Fig� � as a set of rules governing transitions
that the monitor can make� Each transition has the form

�c� �� q
M
�� m� q�

�

where q and q� are states fkg or fk� hg� The monitor is equipped to handle
executions of programs with only two variables	 namely k and h	 which are low
and high variables respectively� A state indicates those variables whose values
at that point are independent of initial values of h� This of course may change
during execution depending upon updates to h�

The policy is captured by the �update rules� If we take state fkg to be the
initial state	 then the third �update rule	 for instance	 allows a transition to
state fk� hg because h is the target of the assignment and h does not occur in the
right side e� Thereafter	 h is treated as a low variable in state fk� hg� Notice that

�update� k � dom���� h �� e

�k �� e� ��� fkg
M

�� �k �� ��e��� fkg

h � dom���� h � e

�h �� e� ��� fkg
M

�� �h �� ��e��� fkg

h � dom���� h �� e

�h �� e� ��� fkg
M

�� �h �� ��e��� fk� hg

x � dom���

�x �� e� ��� fk� hg
M

�� �x �� ��e��� fk� hg

�sequence� �c�� ��� q
M

�� ��� q�

�c�� c�� ��� q
M

�� �c�� �
��� q�

�c�� ��� q
M

�� �c�

�� �
��� q�

�c�� c�� ��� q
M

�� �c�

�� c�� �
��� q�

�branch� ��e� �� �

�if e then c� else c�� ��� q
M

�� �c�� ��� q

��e� � �

�if e then c� else c�� ��� q
M

�� �c�� ��� q

�loop� ��e� � �

�while e do c� ��� q
M

�� �� q

��e� �� �

�while e do c� ��� q
M

�� �c�while e do c� ��� q

Fig� �� An execution monitor

once an evaluation reaches state fk� hg	 it remains in fk� hg thereafter� In state
fk� hg	 the monitor no longer has any e�ect on executions� This is where the

�

semantics of Fig� � and the monitor merge in the sense that for every command

c	 �c� � �� m if and only if �c� �� fk� hg
M
�� m� fk� hg�

Remark �� One can think of the states in a transition as inherited and synthe�
sized attributes� Generalizing the execution monitor to handle more variables
can be done by introducing a set I of variables	 each of whose value is in�
dependent of the initial value of any high variable� There would actually be
only two �update rules� The �rst rule�s hypothesis would	 for an assignment
x �� e	 require 	h � high � h � I
 h �� e� Its synthesized attribute would be
I �fxg� The second rule�s hypothesis would require that x is a high variable and
�h � high � h �� I h � e� Its synthesized attribute would be simply I �

We can regard a set of traces of the monitor as a safety property related to
secrecy by the following theorem�

Theorem �� Let � be a trace of the monitor starting in state fkg� Then every

�nite pre�x of � has a secret branch�free program�

If the monitor never traps a given program on any input	 when started in
state fkg	 then the program is weakly secret� However	 a program may be weakly
secret yet get trapped �e�g� k �� h�h� The monitor also traps a secret program�

k �� h� k �� k � h

Here there is a trace whose branch�free program is just k �� h which is not secret�
One might consider altering the monitor in some way to admit all executions of
this program but then its traces would no longer be pre�x closed as a trace for
k �� h would not exist if the monitor�s policy implies secrecy� It follows then that
there is no monitor�enforced policy that is sound and complete for secrecy since
the set of all traces of every monitor is pre�x closed� Simply put	 if the monitor
executes k �� h	 then it�s unsound	 and if it doesn�t	 then it�s incomplete�

The monitor also ignores indirect dependencies� For instance	 it does not trap

if h then k �� � else k �� �

even though the program is not secret�

� Concluding remarks

Execution monitoring has been a useful mechanism for implementing various
policies� It is important to distinguish policies from properties� A policy implies
a property	 and in some cases	 may be more restrictive than it needs to be in
order to imply the property� The execution monitor presented here implements
a policy that implies weak secrecy in the sense that if it never traps a given
program on any input	 when started in state fkg	 then the program is weakly
secret� It does not however imply secrecy� In fact	 no policy implemented by an
execution monitor can imply secrecy and be complete�

An interesting direction to pursue is completeness of the monitor for weak
secrecy	 that is	 trying to extend the monitor so that it never traps a weakly secret
program� Doing this for a more realistic set of expressions would be challenging�
We assumed that expressions are executed atomically and that the monitor can
inspect an expression at runtime� But expressions obviously can be far more
complex	 involving function calls	 conditional expressions	 exceptions and side
e�ects� One cannot assume these sorts of expressions execute atomically�

Acknowledgments

I would like to thank Geo�rey Smith	 for reviewing this paper	 and Fred Schnei�
der for helpful discussions on safety and execution monitoring�

References

� Mart��n Abadi� Secrecy in programming�language semantics� In Proc� ��th Math�

ematical Foundations of Program Semantics� pages
�
�� April
����
�� R� Focardi and R� Gorrieri� A classi�cation of security properties for process

algebras� Journal of Computer Security� ��
�������
����
����
�� Nevin Heintze and Jon Riecke� The SLam Calculus� Programming with secrecy and

integrity� In Proceedings ��th Symposium on Principles of Programming Languages�
pages �	������ San Diego� CA� January
����

�� K�R�M� Leino and R� Joshi� A semantic approach to secure information �ow� In
Proc �th Int�l Conference on Mathematics of Program Construction� pages ����
��
� Lecture Notes in Computer Science
����
����

�� John McLean� A general theory of composition for trace sets closed under selective
interleaving functions� In Proceedings �		� IEEE Symposium on Security and

Privacy� pages ������ Oakland� CA� May
����
	� A� Sabelfeld and D� Sands� A per model of secure information �ow in sequential

programs� In Proc�
th European Symposium on Programming� Lecture Notes in
Computer Science
��	� March
����

�� F�B� Schneider� Enforceable security policies� Technical Report TR���
		�� Cornell
University� January
����

�� Geo�rey Smith and Dennis Volpano� Secure information �ow in a multi�threaded
imperative language� In Proceedings ��th Symposium on Principles of Program�

ming Languages� pages �����	�� San Diego� CA� January
����
�� Dennis Volpano and Geo�rey Smith� Eliminating covert �ows with minimum typ�

ings� In Proceedings ��th IEEE Computer Security Foundations Workshop� pages

�	�
	�� June
����

�� Dennis Volpano� Geo�rey Smith� and Cynthia Irvine� A sound type system for
secure �ow analysis� Journal of Computer Security� �������
	��
���
��	�

�

